合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 紫檀芪的穩(wěn)定性增強型抗氧化劑制作備方及界面張力測試——結果與討論、結論
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(一)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產(chǎn)生和測試(二)
> 轉印催化層制備:催化劑漿料的表面張力多少合適
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機制研究(三)
> ?表面張力儀干什么用的??表面張力儀原理、類型、使用方法及注意事項
> 磁化水表面張力是多少
> 各類塑料薄膜的表面張力特定范圍一覽
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結果與討論、結論
> 無堿的陰離子-非離子表面活性劑界面張力測定及驅油效率評價
推薦新聞Info
-
> 溫度和碳碳雙鍵數(shù)對脂肪酸酯表面張力的影響(二)
> 溫度和碳碳雙鍵數(shù)對脂肪酸酯表面張力的影響(一)
> 二甲亞砜與二甲苯異構體混合物的體積收縮與表面張力降低效應(二)
> 二甲亞砜與二甲苯異構體混合物的體積收縮與表面張力降低效應(一)
> 表面能與表面張力對凍干制劑中“小瓶霧化”現(xiàn)象的影響機制研究
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(二)
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(一)
> 噻噸酮光敏劑體系:光電轉換與顯色特性的深度解析
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(二)
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(一)
系列脂肪醇聚氧乙烯醚磺酸鹽表面活性劑制備、溶解性、表面張力及界面張力測定(一)
來源:石油化工 瀏覽 598 次 發(fā)布時間:2025-07-25
利用表面活性劑進行化學驅油可大幅提高原油采收率,主要原理在于表面活性劑能較大程度地降低油水界面張力。脂肪醇醚磺酸鹽表面活性劑為非離子-陰離子復合型表面活性劑,其分子結構中含有脂肪族碳鏈疏水基,以及氧乙烯基團和磺酸基團兩種親水基,不僅兼具很好的抗溫和抗鹽能力,且表面活性高、配伍性好、生物降解性能好,可用作高礦化度及高溫油藏的化學驅油劑,具有廣泛的應用前景。國內外有關脂肪醇聚氧乙烯醚磺酸鹽類表面活性劑合成的研究報道較多,但對環(huán)氧乙烷(EO)數(shù)為3的脂肪醇醚磺酸鹽表面活性劑性能的研究較少。
本工作以C14~18脂肪醇、EO和丙烷磺內酯為原料合成了系列脂肪醇聚氧乙烯醚磺酸鹽表面活性劑,測試了表面活性劑的溶解性及其溶液的表面性質,討論了臨盤油田地層水和CaCl2溶液對其表面性質的影響,考察了表面活性劑分別與臨盤混合原油和正構烷烴間的界面張力,得到了原油的等效烷烴碳數(shù)(EACN)。
1實驗部分
1.1主要原料與儀器
十四醇、十六醇、十八醇:工業(yè)品,市售;EO、NaCl、丙烷磺內酯、正辛烷、正癸烷、十二烷、十四烷、十六烷、十八烷:分析純,國藥集團化學試劑有限公司。
臨盤油田地層水:中國石化勝利油田臨盤混合原油,其中Na++K+,Ca2+,Mg2+的含量分別為14 644.6,1 903.8,303.7 mg/L;Cl-,SO42-,HCO3-含量分別為25 878.5,960.6,427.1 mg/L;總礦化度44 118.4 mg/L,pH=6.8。
芬蘭Kibron公司生產(chǎn)的Delta-8全自動高通量表面張力儀,dIFT雙通道動態(tài)界面張力儀。
1.2產(chǎn)物的制備
EO數(shù)為6的C14脂肪醇聚氧乙烯醚(6)磺酸鹽(C14EO6S)、C16脂肪醇聚氧乙烯醚(6)磺酸鹽(C16EO6S)、C18脂肪醇聚氧乙烯醚(6)磺酸鹽(C18EO6S):按文獻[1]報道的方法合成。
EO數(shù)為3的C14脂肪醇聚氧乙烯醚(3)磺酸鹽(C14EO3S)、C16脂肪醇聚氧乙烯醚(3)磺酸鹽(C16EO3S)、C18脂肪醇聚氧乙烯醚(3)磺酸鹽(C18EO3S)按文獻[1]報道的方法合成,產(chǎn)物經(jīng)兩相滴定法測定磺酸鹽含量,純度均達到95%以上。合成反應見式(1)~(3)。
1.3產(chǎn)物的性能測試
1.3.1溶解性的測試
將表面活性劑用蒸餾水配成1%(w)溶液,測試溶液由渾濁變澄清時的溫度,即Krafft點。將表面活性劑溶于NaCl溶液中,置于30~70℃水浴中恒溫觀察其在NaCl溶液中的溶解情況。
1.3.2表面張力的測定
使用吊片法測定表面活性劑的表面張力。將重結晶后的表面活性劑用蒸餾水配制成質量濃度分別為1,5,10,50,100,500,1 000,3 000 mg/L的溶液,根據(jù)表面張力與質量濃度關系曲線的轉折點確定臨界膠束濃度(cmc)及到達cmc時的表面張力(γcmc)。再分別用模擬地層水或CaCl2溶液代替蒸餾水配制表面活性劑溶液并測得相應的cmc和γcmc。
1.3.3界面張力的測定
將表面活性劑用模擬地層水配制成質量濃度為3 000 mg/L的溶液,測定70℃下表面活性劑與原油的界面張力,并考察表面活性劑中的EO數(shù)對界面張力的影響。
2結果與討論
2.1表面活性劑的溶解性
C14EO3S,C16EO3S,C18EO3S表面活性劑的Krafft點分別為5,28,49℃,說明隨分子鏈中脂肪醇碳原子數(shù)(即疏水基鏈長)的增加,表面活性劑的Krafft點升高。
表面活性劑在NaCl溶液中的溶解性見表1。從表1可看出,在實驗溫度(30~70℃)內,C14EO3S在不同NaCl含量的溶液中均具有較好的溶解性;C16EO3S在30℃的5.00%(w)NaCl溶液中出現(xiàn)渾濁現(xiàn)象,但隨溫度的升高,溶解性增強;C18EO3S的溶解性較差,當溫度為30~40℃時,它在1.00%(w)的NaCl溶液中即開始出現(xiàn)渾濁現(xiàn)象,溶解性隨溫度的升高而逐漸增大,當溫度升至60℃后僅在15.00%(w)的NaCl溶液中出現(xiàn)渾濁現(xiàn)象。實驗結果表明,脂肪醇聚氧乙烯醚(3)磺酸鹽表面活性劑中的脂肪醇碳原子數(shù)越少(碳原子數(shù)小于16),在鹽溶液中的溶解性越好。
表1表面活性劑在NaCl溶液中的溶解性
2.2表面性質
表面活性劑分子的結構特點決定了其在水溶液界面(液-氣)上的吸附特性,其極性基團指向水、非極性基團則指向氣。應用Gibbs公式可計算表面活性劑在單位溶液表面的最大飽和吸附量(Γmax),表面活性劑的表面性質見表2。由表2可見,C14EO3S,C16EO3S,C18EO3S表面活性劑在蒸餾水中的cmc分別為100,50,10 mg/L,對應的γcmc分別為29.12,33.86,34.59 mN/m。由此可見,表面活性劑在蒸餾水中的cmc隨疏水基鏈長的增加而降低。這是因為:一方面,脂肪醇聚氧乙烯醚磺酸鹽表面活性劑中含有親水的EO基團,其分子鏈呈鋸齒蜷曲形態(tài)排列,分子占據(jù)面積較大;另一方面,分子中的疏水基鏈長的增加,導致疏水基團的相互作用增強,對蜷曲的分子起到拉伸作用,同時會降低分子親水頭基面積,在這兩個相反作用中疏水基的相互吸引作用隨著疏水鏈長度的增加而明顯增強,使得表面活性劑分子排列更緊密,易于形成膠束。但cmc對應的γcmc則隨疏水基鏈長的增加而略有增加。
脂肪醇聚氧乙烯醚磺酸鹽表面活性劑的Γmax隨疏水基鏈長的增加而減小。這是因為,疏水基鏈長的增加使表面活性劑分子在溶液表面所占的平均面積減小,分子間排列更加緊密。與文獻[1]報道的C14EO6S,C16EO6S,C18EO6S表面活性劑的表面性質對比可看出,當疏水基鏈長相同時,隨EO數(shù)的增加,表面活性劑的cmc和其對應的γcmc均呈增大的趨勢。原因在于,氧乙烯基團具有弱親水性,隨EO數(shù)的增加,表面活性劑的親水性增強,即增加了表面活性劑在水中的溶解性,因而使得表面活性劑形成膠束所需的表面活性劑用量增大。
表2表面活性劑的表面性質





