合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 低界面張力表面活性劑對體系油水界面張力影響
> 水體粘性是什么?
> 往復(fù)振動篩板塔強化低界面張力萃取體系傳質(zhì)效率(二)
> 三元復(fù)合體系的界面擴(kuò)張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 氣體富集、雜質(zhì)對固-液界面納米氣泡接觸角的影響——結(jié)果與討論、結(jié)論
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(三)
> 避免液滴表面張力影響吸附,研發(fā)可提升水霧降塵效果的公路施工用降塵設(shè)備
> ?24℃、25℃、26℃時水的表面張力是多少?20攝氏度1Mpa時水的表面張力
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——摘要、材料與方法
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應(yīng)用潛力(四)
推薦新聞Info
-
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(二)
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(一)
> 表面能與表面張力對凍干制劑中“小瓶霧化”現(xiàn)象的影響機制研究
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(二)
> 新型懸滴實驗系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測量(一)
> 噻噸酮光敏劑體系:光電轉(zhuǎn)換與顯色特性的深度解析
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(二)
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(一)
> 一文讀懂什么是超微量天平
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測定及其對Ni-Yb合金電解的指導(dǎo)意義(二)
從潤濕到粘附:臨界表面張力(γc)如何重塑表界面科學(xué)?
來源: 瀏覽 255 次 發(fā)布時間:2025-10-14
表面能決定粘附,清潔確保接觸,
半個世紀(jì)前發(fā)現(xiàn)的這一原理至今仍是材料科學(xué)的基石。
1968年,當(dāng)大多數(shù)科學(xué)家將粘附問題歸因于化學(xué)鍵合強度時,美國海軍研究實驗室的R. E. Baier和W. A. Zisman在《Science》上發(fā)表了一篇開創(chuàng)性綜述,將研究焦點轉(zhuǎn)向了被忽視的界面潤濕性。《Adhesion: Mechanisms That Assist or Impede It》系統(tǒng)闡述了固體表面能如何支配液體潤濕行為,以及這對形成牢固粘接的決定性作用。
這篇論文奠定了現(xiàn)代表面科學(xué)的基礎(chǔ)框架,其提出的臨界表面張力(γc)概念,使表面能從抽象概念轉(zhuǎn)化為可測量、可調(diào)控的工程參數(shù)。直至今日,無論是智能手機的膠合、飛機的復(fù)合材料結(jié)構(gòu),還是船舶的防污涂層,其背后都有這套理論的影子。
01 粘附的根本矛盾:為什么強粘接如此困難?
理想的粘接需要粘合劑液體在固體表面完全鋪展,然后固化形成連續(xù)連接。但現(xiàn)實中的表面遠(yuǎn)非理想:任何固體表面都有粗糙度,粘合劑可能無法完全填充微觀凹谷,形成界面空隙。
這些微小的界面空隙會成為應(yīng)力集中點,其削弱接頭強度的程度遠(yuǎn)超過其面積占比。Zisman和Baier指出,解決這一問題的關(guān)鍵不在于尋找更強粘性的膠水,而在于確保液體能夠充分潤濕固體表面。
楊氏方程(Young’s Equation)揭示了潤濕性的量化標(biāo)準(zhǔn):γ





