合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 產(chǎn)低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——實(shí)驗(yàn)部分
> 基于藥液表面張力測(cè)定估算蘋果樹最大施藥液量的方法(三)
> 應(yīng)用單分子層技術(shù)分析磷脂酶與不同磷脂底物特異水解性能:結(jié)果和討論、結(jié)論!
> 氧化石蠟油水界面張力測(cè)試方法及低張力性能
> 強(qiáng)紫外線輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(二)
> 基于粒徑、速度、表面張力、黏度測(cè)定揭示塵粒?霧滴碰撞行為規(guī)律(四)
> Langmuir-Blodgett法制備環(huán)糊精單分子或多分子層膜
> 鼠李糖脂生物表面活性劑在液-固界面上的潤(rùn)濕改性微觀機(jī)制研究(三)
> 不同類型的聚醚類非離子破乳劑對(duì)PPG-稀釋原油界面膜性質(zhì)的影響(下)
> 不同官能度聚醚酯結(jié)構(gòu)、消泡性能、表面張力測(cè)定(二)
推薦新聞Info
-
> 溫度和碳碳雙鍵數(shù)對(duì)脂肪酸酯表面張力的影響(二)
> 溫度和碳碳雙鍵數(shù)對(duì)脂肪酸酯表面張力的影響(一)
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(二)
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(一)
> 表面能與表面張力對(duì)凍干制劑中“小瓶霧化”現(xiàn)象的影響機(jī)制研究
> 新型懸滴實(shí)驗(yàn)系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測(cè)量(二)
> 新型懸滴實(shí)驗(yàn)系統(tǒng)的研制與二甲基亞砜/甲醇混合物表面張力測(cè)量(一)
> 噻噸酮光敏劑體系:光電轉(zhuǎn)換與顯色特性的深度解析
> 溫度、締合強(qiáng)度、截?cái)喟霃綄?duì)球形空腔中締合流體界面張力的影響(二)
> 溫度、締合強(qiáng)度、截?cái)喟霃綄?duì)球形空腔中締合流體界面張力的影響(一)
脂肪醇聚醚磺酸鹽的界面性能、耐溫耐鹽性能對(duì)比
來源:精細(xì)石油化工 瀏覽 1736 次 發(fā)布時(shí)間:2023-09-19
近年來,人們發(fā)現(xiàn)氧乙烯基(EO)的引入大大提高了表面活性劑的耐溫耐鹽等性能。文獻(xiàn)中對(duì)烷基鏈相同但氧乙烯基數(shù)不同的同系列表面活性劑研究相對(duì)較少,本工作通過對(duì)實(shí)驗(yàn)室合成的3種不同聚合度的脂肪醇聚醚磺酸鹽的界面性能、耐溫耐鹽等性能進(jìn)行對(duì)比,探究了在疏水鏈不變的情況下聚合度變化對(duì)表面活性劑界面性能的影響。
界面張力
在50℃,用XZD-5型旋轉(zhuǎn)滴超低界面張力測(cè)定儀測(cè)定煤油與表面活性劑水溶液的界面張力,實(shí)驗(yàn)結(jié)果如圖1所示。
由圖1可以看出,隨著測(cè)試時(shí)間的推移,脂肪醇聚醚磺酸鹽與煤油之的界面張力逐漸減小并趨于穩(wěn)定。3種表面活性劑界面張力隨聚合的增大先減小后增大,其中AESO-3界面張力值最大,AESO-6界面張力值最小為6.03×10-2mN/m。
圖1 AESO-n水溶液與煤油的界面張力隨時(shí)間的變化
非離子-陰離子表面活性劑中引入的EO基團(tuán)能夠改變其親水親油平衡,親水親油平衡值(HLB)決定其能否在油水界面形成穩(wěn)定的吸附膜。HBL值偏大或偏小時(shí),表面活性劑分子在水相或油相中溶解度過大,不易在油水界面吸附產(chǎn)生低界面張力。EO聚合度較小時(shí)其在分子中主要體現(xiàn)疏水作用,所以AESO-3表面活性劑HBL值偏小,在油相中的溶解度過大不利低界面張力的形成;隨著EO聚合度的增大,EO基團(tuán)親水性增強(qiáng),HBL值增大,界面張力降低;隨著聚合度繼續(xù)增加,表面活性劑在水中的溶解度增加,同時(shí)氧乙烯鏈在油水界面吸附時(shí),鏈段之間相互交錯(cuò)更容易以卷曲的形式存在[14],二者共同作用導(dǎo)致界面張力有增大的趨勢(shì)。表面活性劑的HBL值可以由下式估算,常見HBL基團(tuán)數(shù)見表1。
HBL=7+∑(親水基團(tuán)數(shù))-∑(親油基團(tuán)數(shù))
耐溫性
實(shí)驗(yàn)測(cè)定了3種表面活性劑在不同溫度下3 h末的界面張力穩(wěn)定值,結(jié)果見表2。
從表2可以看出,AESO-3界面張力值隨著溫度的升高而增加,AESO-6和AESO-9界面張力值始終保持在10-2mN/m數(shù)量級(jí),說明隨著EO聚合度的增加表面活性劑的耐溫性能提高。這主要是脂肪醇聚醚磺酸鹽在形成膠束時(shí)烷基鏈向內(nèi)、聚氧乙烯鏈向外并與水分子之間形成氫鍵,增強(qiáng)了表面活性劑分子的親水性,高溫會(huì)破壞聚氧乙烯鏈與水分子之間的氫鍵作用導(dǎo)致親水性下降。隨著聚合度的增加表面活性劑分子與水分子之間氫鍵數(shù)增多,使得表面活性劑在高溫下也具有較好的界面性能。
耐鹽性
從圖2可以看出,隨著礦化度的增加,AESO-3的界面張力先降低后升高,AESO-6和AESO-9界面張力降低到平衡值后基本保持穩(wěn)定,在礦化度達(dá)到120 000 mg/L時(shí)界面張力仍能達(dá)到10-2mN/m數(shù)量級(jí),這說明EO聚合度的增加提高了脂肪醇聚醚磺酸鹽的耐鹽性能。這一現(xiàn)象可以用無機(jī)鹽對(duì)表面活性劑在溶液中的聚集形態(tài)的影響來解釋[15]。通常表面活性劑中的雙親基團(tuán)各自趨向于自身親和力強(qiáng)的溶液中,在油水界面規(guī)則排列形成一層親水基向外、憎水基向內(nèi)的薄層,溶液中濃度達(dá)到一定時(shí),表面活性劑分子發(fā)生聚集形成膠束。加入適量無機(jī)鹽,無機(jī)鹽正離子受靜電作用會(huì)在親水基附近聚集能夠降低親水基之間的靜電排斥、改變表面活性劑在界面的堆積形態(tài),從而降低油水界面張力;隨著無機(jī)鹽濃度繼續(xù)增大,無機(jī)鹽離子對(duì)表層進(jìn)一步壓實(shí),油相無法進(jìn)入膠束中導(dǎo)致界面張力增大。而對(duì)于非離子-陰離子表面活性劑,中性親水基團(tuán)EO的引入減弱了無機(jī)鹽對(duì)界面親水基的靜電作用,從而使其在礦化度較高的時(shí)候仍然能夠保持良好的界面活性。





